Electron microscopy of metal-shadowed and negatively stained microtubule protein. Structure of the 30 S oligomer.
نویسندگان
چکیده
Microtubule protein purified from porcine brain was fixed at low protein concentration with glutaraldehyde under conditions which maximize the relative concentration of the ring-shaped 30 S oligomer. Fixed oligomer was separated from glutaraldehyde and other protein species by column chromatography. The fixed, isolated oligomer was deposited on electron microscopy grids, dehydrated, and then critical point-dried before shadow-coating with carbon/platinum alloy at a fixed angle. Analysis of the shadow lengths observed by electron microscopy revealed that the height of the 30 S oligomer is 15 nm. Microtubule protein deposited on electron microscope grids at high protein concentrations was examined by the negative stain technique and found to contain apparent stacks of oligomer from which the number of tubulin dimers per turn of the ring and the distance between turns could be determined. The number of subunits per turn was determined as 13.8. The distance between turns was found to be 7.4 nm, indicating that the 15 nm high, shadowed oligomers consisted of two turns. Additional information from the literature is considered and a model is presented for the oligomer. The model is a helix of 29 tubulin dimers and five high molecular weight protein molecules arranged so as to preserve intersubunit bonding patterns found in microtubules.
منابع مشابه
Electron Microscopy of Metal-shadowed and Negatively Stained Microtubule Protein
Microtubule protein purified from porcine brain was fixed at low protein concentration with glutaraldehyde under conditions which maximize the relative concentration of the ring-shaped 30 S oligomer. Fixed oligomer was separated from glutaraldehyde and other protein species by column chromatography. The fixed, isolated oligomer was deposited on electron microscopy grids, dehydrated, and then cr...
متن کاملIsolation of Herpetosiphon giganteus and Ultrastructure Analysis by Electron Microscopy
Herpetosiphon giganteus is a filamentous gliding bacterium. Gliding motility is the movement of the cells over surfaces without the aid of flagella. The mechanism responsible for bacterial gliding motility has not been known and there are only a few data on Herpetosiphon giganteus. The aim of this study was to observe the ultrastructure and negative staining of isolated strains of Herpetosiphon...
متن کاملComparing Invasive and Non-Invasive of Isolated Shigella flexneri by Electron Microscopy of Cell Culture, SDS-PAGE and Congo Red Method
The aim of this study was to compare invasive and non-invasive strains of Shigella flexneri isolated from Tehran by a 120 kDa protein band by SDS-PAGE, electron microscopy of cell culture and Congo red dye methods. Methods: S. flexneri strains were isolated by standard bacterial methods from fecal specimens of children attending to the 3 children’s hospitals. Phenotype analysis for screening v...
متن کاملThe Sendai virus nucleocapsid exists in at least four different helical states.
Sendai virus nucleocapsids have been observed by electron microscopy to coexist in three different helical pitch conformations, 5.3, 6.8, and 37.5 nm. The 5.3- and 6.8-nm conformations are present both in uranyl acetate negatively stained preparations and in tantalum-tungsten metal-shadowed preparations, whereas the 37.5-nm conformation, which has not been previously reported, is present only i...
متن کاملStructure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica.
YscC is the integral outer membrane component of the type III protein secretion machinery of Yersinia enterocolitica and belongs to the family of secretins. This group of proteins forms stable ring-like oligomers in the outer membrane, which are thought to function as transport channels for macromolecules. The YscC oligomer was purified after solubilization from the membrane with a nonionic det...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 253 8 شماره
صفحات -
تاریخ انتشار 1978